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Abstract. The spectra of two electrons in a parabolic quantum dot in a magnetic field are
obtained using the WKB approximation. No restrictions are imposed on the value of the
electron–electron interaction. A simple approximation allowing an exact solution to be obtained
for the interaction between two electrons in a quantum dot is proposed. It reproduces all of the
qualitative features of the two-electron spectrum. Quantitatively, it is in good agreement with
the WKB solution for the range of parameters of experimental interest.

1. Introduction

The electronic properties of two-dimensional quantum dots are of considerable current
interest. In particular, spectra of few-electron structures have been probed by a variety
of experimental methods, in particular optical spectroscopy [1, 2], capacitance spectroscopy
[3], and transport measurements [4, 5]. The theoretical studies are based on the model
electron confinement, usually described by a parabolic potential. Although this model has
proved to be in good agreement with experiment [1, 4–6], the main problem is that of how
to take into account the electron–electron interaction. Known approaches include numerical
diagonalization [7, 8], Monte Carlo simulations [9], Hartree–Fock or RPA calculations
[8, 6, 10, 11], perturbation series expansion in powers of the electron–electron interaction
[12], and numerical solution of the Schrödinger equation [13].

The theoretical and experimental results relating to the quantum dots problem which
have been obtained so far have been presented in an excellent review article by Johnson
(see [14] and references therein).

Here, we derive the solution of the Schrödinger equation of a two-electron parabolic
dot in an external magnetic field, making use of the WKB approximation. We also propose
a simple model which proves to be in quantitative agreement (within several per cent)
with the WKB solution. Despite the initial approximations (such as assuming a parabolic
confinement potential), it seems to be sufficient for producing a proper description of the
experimental data. The model is based on the effective one-electron potential and admits
an exact solution.
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2. WKB solution

In experimentally realized dots, the motion in thez-direction is always frozen, and we can
treat the dots as two-dimensional discs using a parabolic confinement potential, as usual.
Let us assume that the magnetic field is applied perpendicularly to thexy-plane. In the
magnetic field, the Hamiltonian of two interacting electrons of effective massesm∗ can be
separated into the centre-of-mass and relative-motion parts as follows:
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wherer = r1 − r2 and p = 1
2(p1 − p2) are the relative coordinates,R = 1

2(r1 + r2)

and P = p1 + p2 are the centre-of-mass coordinates,M = 2m∗ and Q = 2e are
the total mass and charge, respectively,µ = m∗/2 and q = e/2 are the reduced mass
and charge, respectively,ω0 is the characteristic confinement frequency, andp = −i∇r ,
P = −i∇R. Due to this separability, the wave function of the system considered reads
simply as9(r,R) = 8(R)φ(r), and the Schr̈odinger equation splits into two independent
equations.

We choose the gauge described by the vector potentialAϕ = rB/2, Ar = Az = 0. In
the planar polar coordinates, the Hamiltonian (2) of the relative motion takes the form
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with the cyclotron frequency given byωc = eB/m∗c, and the renormalized confinement
frequency given by�2 = ω2

0 + ω2
c/4. A dielectric constant,ε, concerns the host

semiconductor. After making the substitutionφ(r) = r−1/2χ(r)eimϕ , we obtain
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wherem = 0,±1,±2, . . . denotes the azimuthal quantum number.
The centre-of-mass wave function8(R) obeys equation (4) without the Coulomb

potential. With the last term in the brackets omitted, equation (4) is easily solved in terms
of the confluent hypergeometric function. The spectrum is

Ec = (2N + |M| + 1)�+ 1
2Mωc N = 0, 1, 2, . . . M = 0,±1,±2, . . .. (5)

In the following we concentrate on the relative motion only. The electron energy
spectrum is given by the sum ofEc and the energy of the relative motion. After making
the substitutionr = √2`x, where`2 = 1/m∗�, we get from equation (4)
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)
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with

ε = (2E −mωc)/� γ = m2− 1
4 β =

√
2`/εaB aB = 1/m∗e2. (7)

We solve equation (6) within the WKB approximation. Equation (6) contains the
irregular pointx = 0. According to the general WKB theory for equations with irregularities
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Figure 1. The spectrum of a two-electron
quantum dot in the WKB approximation forn =
0 andm = 0, 1, 2, 3, 4, and in the absence of
electron–electron interaction,β = 0.

[15], one needs to make the substitutionγ → γ + 1
4. Thereafter, the semiclassical spectrum

of the system can be obtained from the Bohr–Sommerfeld condition∫ a

b
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where the turning pointsa, b are determined by the positive roots of the algebraic equation

x4− εx2+ βx +m2 = 0. (9)

Equation (9) can be solved with the help of its cubic resolvent (see e.g. [16])

z3− 2εz2+ (ε2− 4m2)z− β2 = 0. (10)

The solutionsz1, z2, z3 of the cubic resolvent (10) for equation (9) are given by Cardano’s
formulae:
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Note that the branch of the cubic root in equations (11) has to be chosen in such a way
that arg(y1/3) = arg(y)/3. Using the solutions (11), we express the positive roots (turning
points) of equation (9) as follows:

a = (√z3+√z2−√z1
)
/2

b = (√z3−√z2+√z1
)
/2
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and the negative ones as follows:

c = (−√z3+√z2+√z1
)
/2

d = (−√z3−√z2−√z1
)
/2.

The integral (8) written in the form∫ a

b

−x4+ εx2− βx −m2

√
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x

can be easily expressed in terms of complete Legendre elliptic integrals of the first,
F(π/2, k), and third,5(π/2, s, k), kinds [17]. The Bohr–Sommerfeld condition (8) then
gives the transcendental equation for the electron relative-motion spectrumε = εn,m:
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where

k2 = (a − b)(c − d)
(a − c)(b − d) .

The solution of equation (12) can be easily carried out numerically. For the non-
interacting electrons (β = 0), the numerical WKB solution coincides precisely with the
exact solution of the type given by (5), and is presented in figure 1 as a function of the
ratio ωc/ω0.

Figure 2. The spectrum of a two-electron
quantum dot in the WKB approximation for
n = 0 and m = 0,−1,−2,−3,−4, and
finite electron–electron interactionβ = 3.
The ground state shifts to the states with
higher angular momentum as the magnetic
field increases.
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The spectra of the interacting electrons are shown in figure 2 forβ = 3. As the
magnetic field increases, the ground staten = 0, m = 0 shifts to the levels with higher
angular momentumn = 0, m = −1,−2,−3, . . .. This happens because the Coulomb
energy gets smaller when the angular momentum|m| increases along with the average
distance between electrons. The spectra presented in figures 1 and 2 correspond to the
previous results [18–20] obtained by different (mainly numerical) methods.

3. Harmonic approximation

Now, we propose a model which has been found to give a good approximation of the above
results. The potential energy in the WKB approximation (see also (6) after making the
substitutionγ → γ + 1

4)

V (x) = x2+ β
x
+ m

2

x2
(13)

has its minimum value atx = x0, whereV (x0) = 2x2
0 + β/2x0, and increases when

x → 0,∞. Above,x0 is the positive root of the equation

x4− 1
2βx −m2 = 0.

We replaceV (x) by its harmonic approximation, allowing exact solution of the Schrödinger
equation (6). Then, the expression (13) with its Taylor’s expansion up to a quadratic term
near the minimum value is replaced by

V (x) = V (x0)+ 4

(
1− β

8x3
0

)
x2. (14)

The result is the linear oscillator spectrum
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Note that the spectrum (15) for noninteracting electrons (β = 0) coincides with its exact
valueE(n,m) = (2n+ |m| + 1)�+ 1

2mωc.

Figure 3. The linear oscillator approximation
(15) for β = 3 and zero magnetic field,ωc = 0,
and various quantum numbersn, m. The WKB
solution is also shown (dotted curves) to allow
an assessment to be made of the accuracy of the
formula (15).
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To compare the WKB solution with the interpolation formula (15), both spectra are
shown in figure 3 for the absence of a magnetic field. Naturally enough, the approximation
(15) is better for smallern and largerm. Nonzero magnetic field, obviously, does not render
this approximation less accurate, because it results only in a rescaling of the confinement
frequency and the adding of a diamagnetic term into the Hamiltonian (3). Therefore, the
most important effect of the magnetic field, i.e., the shift of the ground state to the higher
angular moments in order to decrease the Coulomb electron–electron repulsion [3, 18], is
also represented in terms of the approximate formula (15). The corresponding data mainly
coincide with those presented in figure 2, and are not given here for brevity.

4. Summary

The electron–electron interaction of two electrons in a quantum dot can be taken into account
using a simple approximation which allows exact solutions to be obtained. To allow us to
estimate the accuracy of this approximation, the WKB solution is also derived. The error
is not larger than a few per cent. In view of the initial approximations, such as that of
assuming a parabolic confinement potential, such precision seems to be sufficient.
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